Complexity
Reference: https://www.bigocheatsheet.com/
q = []
def enqueue(data):
q.append(data)
def dequeue(data):
return q.pop(0)
# priority q
import queue
q = queue.PriorityQueue()
q.put((10, "asd"))
q.put((1, "231"))
q.put((5, "12sdf"))
print(q.qsize()) # 3
print(q.get()) # (5, "12sdf")
print(q.get()) # (10, "asd")
stck = []
def push(data):
stck.append(data)
def pop():
return stck.pop()
class Node:
def __init__(self, data):
self.data = data
self.next = None
class NodeMgmt:
def __init__(self, data):
self.head = Node(data)
def add(self, data):
if self.head == '':
self.head = Node(data)
else:
node = self.head
while node.next:
node = node.next
node.next = Node(data)
def desc(self):
node = self.head
while node:
print (node.data)
node = node.next
def delete(self, data):
if self.head == '':
print ('해당 값을 가진 노드가 없습니다.')
return
if self.head.data == data: # 경우의 수1: self.head를 삭제해야할 경우 - self.head를 바꿔줘야 함
temp = self.head # self.head 객체를 삭제하기 위해, 임시로 temp에 담아서 객체를 삭제했음
self.head = self.head.next # 만약 self.head 객체를 삭제하면, 이 코드가 실행이 안되기 때문!
del temp
else:
node = self.head
while node.next: # 경우의 수2: self.head가 아닌 노드를 삭제해야할 경우
if node.next.data == data:
temp = node.next
node.next = node.next.next
del temp
pass
else:
node = node.next
def search_node(self, data):
node = self.head
while node:
if node.data == data:
return node
else:
node = node.next
# 테스트
node_mgmt = NodeMgmt(0)
for data in range(1, 10):
node_mgmt.add(data)
node = node_mgmt.search_node(4)
print (node.data)
class Node:
def __init__(self, data, prev=None, next=None):
self.prev = prev
self.data = data
self.next = next
class NodeMgmt:
def __init__(self, data):
self.head = Node(data)
self.tail = self.head
def insert_before(self, data, before_data):
if self.head == None:
self.head = Node(data)
return True
else:
node = self.tail
while node.data != before_data:
node = node.prev
if node == None:
return False
new = Node(data)
before_new = node.prev
before_new.next = new
new.next = node
return True
def insert_after(self, data, after_data):
if self.head == None:
self.head = Node(data)
return True
else:
node = self.head
while node.data != after_data:
node = node.next
if node == None:
return False
new = Node(data)
after_new = node.next
new.next = after_new
new.prev = node
node.next = new
if new.next == None:
self.tail = new
return True
def insert(self, data):
if self.head == None:
self.head = Node(data)
else:
node = self.head
while node.next:
node = node.next
new = Node(data)
node.next = new
new.prev = node
self.tail = new
def desc(self):
node = self.head
while node:
print (node.data)
node = node.next
node_mgmt = NodeMgmt(0)
for data in range(1, 10):
node_mgmt.insert(data)
node_mgmt.desc()
node_mgmt.insert_after(1.5, 1)
node_mgmt.desc()
Python: dict()
# Chaining
hash_table = list([0 for i in range(8)])
def get_key(data):
return hash(data)
def hash_function(key):
return key % 8
def save_data(data, value):
index_key = get_key(data)
hash_address = hash_function(index_key)
if hash_table[hash_address] != 0:
for index in range(len(hash_table[hash_address])):
if hash_table[hash_address][index][0] == index_key:
hash_table[hash_address][index][1] = value
return
hash_table[hash_address].append([index_key, value])
else:
hash_table[hash_address] = [[index_key, value]]
def read_data(data):
index_key = get_key(data)
hash_address = hash_function(index_key)
if hash_table[hash_address] != 0:
for index in range(len(hash_table[hash_address])):
if hash_table[hash_address][index][0] == index_key:
return hash_table[hash_address][index][1]
return None
else:
return None
print (hash('Dave') % 8)
print (hash('Dd') % 8)
print (hash('Data') % 8)
save_data('Dd', '1201023010')
save_data('Data', '3301023010')
read_data('Dd')
print(hash_table)
# Linear probling
hash_table = list([0 for i in range(8)])
def get_key(data):
return hash(data)
def hash_function(key):
return key % 8
def save_data(data, value):
index_key = get_key(data)
hash_address = hash_function(index_key)
if hash_table[hash_address] != 0:
for index in range(hash_address, len(hash_table)):
if hash_table[index] == 0:
hash_table[index] = [index_key, value]
return
elif hash_table[index][0] == index_key:
hash_table[index][1] = value
return
else:
hash_table[hash_address] = [index_key, value]
def read_data(data):
index_key = get_key(data)
hash_address = hash_function(index_key)
if hash_table[hash_address] != 0:
for index in range(hash_address, len(hash_table)):
if hash_table[index] == 0:
return None
elif hash_table[index][0] == index_key:
return hash_table[index][1]
else:
return None
print (hash('dk') % 8)
print (hash('da') % 8)
print (hash('dc') % 8)
save_data('dk', '01200123123')
save_data('da', '3333333333')
read_data('dc')
# using hashlib and chaining
import hashlib
hash_table = list([0 for i in range(8)])
def get_key(data):
hash_object = hashlib.sha256()
hash_object.update(data.encode())
hex_dig = hash_object.hexdigest()
return int(hex_dig, 16)
def hash_function(key):
return key % 8
def save_data(data, value):
index_key = get_key(data)
hash_address = hash_function(index_key)
if hash_table[hash_address] != 0:
for index in range(hash_address, len(hash_table)):
if hash_table[index] == 0:
hash_table[index] = [index_key, value]
return
elif hash_table[index][0] == index_key:
hash_table[index][1] = value
return
else:
hash_table[hash_address] = [index_key, value]
def read_data(data):
index_key = get_key(data)
hash_address = hash_function(index_key)
if hash_table[hash_address] != 0:
for index in range(hash_address, len(hash_table)):
if hash_table[index] == 0:
return None
elif hash_table[index][0] == index_key:
return hash_table[index][1]
else:
return None
print (get_key('db') % 8)
print (get_key('da') % 8)
print (get_key('dh') % 8)
save_data('da', '01200123123')
save_data('dh', '3333333333')
read_data('dh')
class Node:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
class NodeMgmt:
def __init__(self, head):
self.head = head
def insert(self, value):
self.current_node = self.head
while True:
if value < self.current_node.value:
if self.current_node.left != None:
self.current_node = self.current_node.left
else:
self.current_node.left = Node(value)
break
else:
if self.current_node.right != None:
self.current_node = self.current_node.right
else:
self.current_node.right = Node(value)
break
def search(self, value):
self.current_node = self.head
while self.current_node:
if self.current_node.value == value:
return True
elif value < self.current_node.value:
self.current_node = self.current_node.left
else:
self.current_node = self.current_node.right
return False
def delete(self, value):
# 삭제할 노드 탐색
searched = False
self.current_node = self.head
self.parent = self.head
while self.current_node:
if self.current_node.value == value:
searched = True
break
elif value < self.current_node.value:
self.parent = self.current_node
self.current_node = self.current_node.left
else:
self.parent = self.current_node
self.current_node = self.current_node.right
if searched == False:
return False
# case1
if self.current_node.left == None and self.current_node.right == None:
if value < self.parent.value:
self.parent.left = None
else:
self.parent.right = None
# case2
elif self.current_node.left != None and self.current_node.right == None:
if value < self.parent.value:
self.parent.left = self.current_node.left
else:
self.parent.right = self.current_node.left
elif self.current_node.left == None and self.current_node.right != None:
if value < self.parent.value:
self.parent.left = self.current_node.right
else:
self.parent.right = self.current_node.right
# case 3
elif self.current_node.left != None and self.current_node.right != None:
# case3-1
if value < self.parent.value:
self.change_node = self.current_node.right
self.change_node_parent = self.current_node.right
while self.change_node.left != None:
self.change_node_parent = self.change_node
self.change_node = self.change_node.left
if self.change_node.right != None:
self.change_node_parent.left = self.change_node.right
else:
self.change_node_parent.left = None
self.parent.left = self.change_node
self.change_node.right = self.current_node.right
self.change_node.left = self.change_node.left
# case 3-2
else:
self.change_node = self.current_node.right
self.change_node_parent = self.current_node.right
while self.change_node.left != None:
self.change_node_parent = self.change_node
self.change_node = self.change_node.left
if self.change_node.right != None:
self.change_node_parent.left = self.change_node.right
else:
self.change_node_parent.left = None
self.parent.right = self.change_node
self.change_node.right = self.current_node.right
self.change_node.left = self.current_node.left
return True
# test
# 0 ~ 999 숫자 중에서 임의로 100개를 추출해서, 이진 탐색 트리에 입력, 검색, 삭제
import random
# 0 ~ 999 중, 100 개의 숫자 랜덤 선택
bst_nums = set()
while len(bst_nums) != 100:
bst_nums.add(random.randint(0, 999))
#print (bst_nums)
# 선택된 100개의 숫자를 이진 탐색 트리에 입력, 임의로 루트노드는 500을 넣기로 함
head = Node(500)
binary_tree = NodeMgmt(head)
for num in bst_nums:
binary_tree.insert(num)
# 입력한 100개의 숫자 검색 (검색 기능 확인)
for num in bst_nums:
if binary_tree.search(num) == False:
print ('search failed', num)
# 입력한 100개의 숫자 중 10개의 숫자를 랜덤 선택
delete_nums = set()
bst_nums = list(bst_nums)
while len(delete_nums) != 10:
delete_nums.add(bst_nums[random.randint(0, 99)])
# 선택한 10개의 숫자를 삭제 (삭제 기능 확인)
for del_num in delete_nums:
if binary_tree.delete(del_num) == False:
print('delete failed', del_num)
Usage: When algo need faster min/max return such as priority queue (regular min/max run in O(n) while heap run in O(n log n))
Heap | Binary Tree |
---|---|
Each nodes’ value is greater than or equal to child node (for __MAX heap)__ (Heap doesn’t have rule about which child is large or small) | left child < parent < right child |
For finding max/min | For Searching |
# heap
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None)
self.heap_array.append(data)
def move_down(self, popped_idx):
left_child_popped_idx = popped_idx * 2
right_child_popped_idx = popped_idx * 2 + 1
# case1: 왼쪽 자식 노드도 없을 때
if left_child_popped_idx >= len(self.heap_array):
return False
# case2: 오른쪽 자식 노드만 없을 때
elif right_child_popped_idx >= len(self.heap_array):
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
return True
else:
return False
# case3: 왼쪽, 오른쪽 자식 노드 모두 있을 때
else:
if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
return True
else:
return False
else:
if self.heap_array[popped_idx] < self.heap_array[right_child_popped_idx]:
return True
else:
return False
def pop(self):
if len(self.heap_array) <= 1:
return None
returned_data = self.heap_array[1]
self.heap_array[1] = self.heap_array[-1]
del self.heap_array[-1]
popped_idx = 1
while self.move_down(popped_idx):
left_child_popped_idx = popped_idx * 2
right_child_popped_idx = popped_idx * 2 + 1
# case2: 오른쪽 자식 노드만 없을 때
if right_child_popped_idx >= len(self.heap_array):
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
popped_idx = left_child_popped_idx
# case3: 왼쪽, 오른쪽 자식 노드 모두 있을 때
else:
if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
popped_idx = left_child_popped_idx
else:
if self.heap_array[popped_idx] < self.heap_array[right_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[right_child_popped_idx] = self.heap_array[right_child_popped_idx], self.heap_array[popped_idx]
popped_idx = right_child_popped_idx
return returned_data
def move_up(self, inserted_idx):
if inserted_idx <= 1:
return False
parent_idx = inserted_idx // 2
if self.heap_array[inserted_idx] > self.heap_array[parent_idx]:
return True
else:
return False
def insert(self, data):
if len(self.heap_array) == 1:
self.heap_array.append(data)
return True
self.heap_array.append(data)
inserted_idx = len(self.heap_array) - 1
while self.move_up(inserted_idx):
parent_idx = inserted_idx // 2
self.heap_array[inserted_idx], self.heap_array[parent_idx] = self.heap_array[parent_idx], self.heap_array[inserted_idx]
inserted_idx = parent_idx
return True
Reference: https://www.fun-coding.org/daveblog.html